
Comparing Machine-Learning Methods for the Prediction of Major 

Adverse Limb Events and Mortality after a Percutaneous Intervention

OBJECTIVES: The objective was to formulate, test, and compare the 
performance of regression-based and machine learning models in the 
prediction major adverse limb events (MALE) and mortality among 
patients receiving treatment for lower extremity peripheral artery disease 
(PAD).
METHODS: Patients undergoing atherectomy, stent, and combination 
stent atherectomy for lower extremity PAD were identified in the Vascular 
Quality Initiative registry. Thirty-nine variables summarizing demographic, 
medical history, pre-operative, indication-specific, and procedure-specific 
characteristics were utilized to predict MALE and mortality events. For 
both events, we compared the performance of four different prediction 
models: a generalized linear model (GLM), a Least Absolute Shrinkage and 
Selection Operator (LASSO) regularized GLM, a gradient boosted decision 
tree, and random forest model. The area under the curve (AUC) evaluated 
the effectiveness of each prediction model. For validation purposes, 5-fold 
cross-validation was repeated three times. Pairwise comparisons of the 
receiver operating characteristic curves (ROC), sensitivity, and specificity 
measures with Bonferroni adjustment for multiple testing applied were 
performed to compare the models' performance.
RESULTS: Among 15964 identified patients, a MALE occurred in 26.02% 
of patients, and death occurred in 18.82% of patients. The most effective 
predictive model for MALE, as determined by the AUC, was the gradient 
boosted decision tree (AUC= 0.7539) followed by the LASSO regulated 
GLM (AUC= 0.749). The most effective predictive model for mortality was 
the LASSO regularized GLM (AUC=0.7930) followed by the GLM model 
(AUC=0.7922). The GLM, LASSO regularized GLM model, and gradient 
boosted decision tree produced similar ROC.
CONCLUSIONS: All models showed acceptable discrimination, with an 
AUC greater than 0.7,  when predicting MALE and mortality among 
patients receiving treatment for lower extremity peripheral artery disease. 
The machine learning techniques outperformed traditional regression-
based techniques and can be leveraged to generate robust predictive models 
within the clinical space of lower extremity PAD. 

Abstract

• All evaluated models predicting MALE and mortality following a 
revascularization procedure showed acceptable discrimination in 
determining events.

• This study supports the use of predictive modeling within the clinical 
space of lower extremity peripheral artery disease.

• Future machine learning models may employ additional data and 
linkage to other data sources to further inform and increase the 
generated predictive models' discriminatory ability. 

Conclusion

• This study utilized data from the Vascular Quality Initiative (VQI) 
registry.

• Included patients received atherectomy or stenting for symptomatic 
arterial occlusive disease in a lower extremity non-aortic vein between 
January 2010 and September 2018.

• Patients were excluded who (1) previously received a stent or 
atherectomy procedure to mitigate potential misclassification of adverse 
events to the current procedure observed in the dataset, (2) experienced 
an endpoint of interest because the focus of this study was on new events 
and not recurrent events, or (3) did not experience a 3 years of follow-
up.

• The study cohort was stratified into three exposure groups: (1) 
atherectomy alone, (2) stent placement alone, and (3) combination of 
stent placement and atherectomy

• The primary endpoint of interest was a major adverse limb event 
(MALE) which encompasses above the ankle amputations and major 
reinterventions, such as a bypass graft revision and mortality.

• A total of 39 variables describing demographic, medical history, pre-
operative, indication, procedure, and discharge-related characteristics of 
the included population were included in the predicted models.

• The MALE and mortality prediction models were built using logistic 
regression, logistic regression with the Least Absolute Shrinkage and 
Selection Operator (LASSO) regularization, gradient boosting, and 
random forest models 

• The final predictive model with the greatest area under curve (AUC) 
within each model derivation method was selected.

• Given that the outcomes are categorical variables, sensitivity, specificity, 
the positive predictive values, and the negative predictive values were 
calculated to further describe the generated predictive models.

• Variable importance was used to identify the twenty most significant 
predictors within each model

• For validation purposes, 5-fold cross-validation was repeated three 
times.

• To compare the performance of the models, pairwise comparisons with 
Bonferroni adjustment for multiple testing applied to receiver-operating 
curves (ROC), sensitivity, and specificity measures were performed.

Materials and Methods

• In the VQI database, 98868 patients underwent an atherectomy or stent
placement procedure from January 2010 through September 2018

• After applying the exclusion criteria, 46108 patients remained with
15964 patients experiencing follow-up for three years

Results and Discussion

• Regulatory bodies and clinicians have increasingly accepted and 
leveraged the use of real word evidence (RWE) generated from real-
world data (RWD) to inform regulatory and clinical-decision making.6–8

• RWD can not only be used to retrospectively assess the effectiveness and 
safety of revascularization procedures but can also be used to formulate 
models that help determine risk factors and probabilities of successful 
revascularization among patients needing percutaneous treatment.

• Registries are an important source of RWD and have been continuously 
used to inform clinical and regulatory decision making.6,13

• The results from robust predictive models may help regulatory processes 
by informing the future clinical studies for labeling or indications for use 
for a device, and clinical guidelines for the appropriate use of devices 
among patients. 

• Machine learning models may overcome a number of limitations 
associated with traditional regression-based models.

• Lower extremity peripheral artery disease (PAD) refers to the buildup of 
plaque within the peripheral arteries.1,2

• The objective of this study was to formulate and test a model used to 
predict major adverse limb events (MALE) and mortality among patients 
receiving treatment for lower extremity PAD. 

Introduction

Figure 1. Methods Summary of models and outcomes assessed at 3 years 

Table 2. Summary of Model Results for the Outcome Major Adverse Limb 
Event*NIR= No Information Rate; AUC=Area Under the Curve
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N= 15,964

39 Variables

1. Demographics (8)

2. Medical history (8)

3. Pre-operative (7)

4. Indication (4)

5. Procedure (8)

6. Discharge (4)
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Outcome: Major Adverse Limb Event
Generalized 
Linear Model

LASSO 
Regularized 
Generalized 
Linear Model

Gradient 
Boosted 
Decision Tree

Random 
Forest

Accuracy; (95% CI) 0.7663 
(0.7512, 
0.7809)

0.7663 
(0.7512, 
0.7809)

0.7675 
(0.7525, 
0.7821)

0.7669 
(0.7519, 
0.7815)

NIR .74 .74 .74 .74
P-value 
[Accuracy>NIR]

<.0001 <.0001 <.0001 <.0001

Kappa .2645 .261 .244 .2216
AUC .7483 .7492 .7539 .7350
Sensitivity .28193 .27590 .24337 .20964
Specificity .93649 .93861 .95174 .96274
Positive Predictive 
Value

.60937 .61230 .63924 .66412

Negative Predictive 
Value

.78775 .78673 .78164 .77611

Outcome: Major Adverse Limb Event

ROC Sensitivity Specificity

Difference p-value Difference p-value Difference p-value

GLM vs. LASSO -0.000989 1.00 -0.002540 1.00 0.003416 1.00

GLM vs. XGB -0.004355 1.00 -0.017852 <0.001 0.039518 <0.001

GLM vs. RF 0.005895 0.01956 -0.026461 <0.001 0.082932 <0.001

LASSO vs. XGB -0.003366 1.00 -0.015312 <0.001 0.036102 <0.001

LASSO vs. RF 0.006884 0.64787 -0.023920 <0.001 0.079517 <0.001

XGB vs. RF 0.010251 0.03996 -0.008609 <0.001 0.043414 <0.001

Table 3. Difference in ROC, Sensitivity, and Specificity with Bonferroni 
Adjusted p-values for the Outcome Major Adverse Limb Event

Outcome: Mortality
Generalized 
Linear Model

LASSO 
Regularized 
Generalized 
Linear Model

Gradient 
Boosted 
Decision Tree

Random 
Forest

Accuracy; (95% CI) 0.8305 (0.817, 
0.8434)

0.8308 
(0.8174, 
0.8437)

0.834 
(0.8209, 
0.847)

0.8299 
(0.8164, 
0.8428)

NIR 0.8117 .8117 .8117 0.8117
P-value 
[Accuracy>NIR]

.003 .003 <.001 .004

Kappa .3156 .3120 .3150 .2096
AUC .7922 .7930 .7881 .7808
Sensitivity .30283 .29617 .28785 0.16306
Specificity .95291 .95484 .96102 0.98456
Positive Predictive 
Value

.59868 .60339 .63139 0.71014

Negative Predictive 
Value

.85492 .85399 .85332 0.83530

Table 4. Summary of Model Results for the Outcome Mortality*NIR= No 
Information Rate; AUC=Area Under the Curve

Outcome: Mortality

ROC Sensitivity Specificity

Difference p-value Difference p-value Difference p-value

GLM vs. LASSO -0.001190 1.0 -0.0029583 .5044 0.017350 0.02159

GLM vs. XGB 0.003138 1.0 -0.0033766 .2262 0.022461 0.03034

GLM vs. RF 0.012734 1.0 -0.0260095 1.00 0.152104 1.00

LASSO vs. XGB 0.004328 0.058074 -0.004183 <.001 0.005111 <.001

LASSO vs. RF 0.013924 0.008389 -0.0230512 <.001 0.134753 <.001

XGB vs. RF 0.009595 0.261462 -0.0226329 <.001 0.129643 <.001

Table 5. Difference in ROC, Sensitivity, and Specificity with Bonferroni 
Adjusted p-values for the Outcome Mortality

• In the prediction of MALE, the gradient boosted model generated the

greatest accuracy of 0.7675 (95%CI:0.752-0.782), the greatest AUC of

0.754, a sensitivity of 0.243, and specificity of 0.952.

• Common leading predictors among all models were procedure setting,

artery type, age category, primary insurance type, pre-operative conditions,

pre-operative medications, and number of arteries treated. Stent as a

treatment type was only identified as a leading predictor in the gradient

boosted model.

• The difference in ROC statistic was significantly different when comparing

the random forest model to the GLM model and gradient boosted model.

• When predicting mortality, the LASSO regularized generalized linear

Common leading predictors among all models were age category, primary

insurance type, BMI category, pre-operative diabetes, pre-operative

dialysis, a history of congestive heart failure, procedure setting, leg

symptoms, and pre-operative smoking. Treatment type was not identified

as a leading predictor in any of the models.

• Pairwise comparisons with Bonferroni adjustment for multiple testing 
showed that the GLM, LASSO regularized GLM model, and gradient 
boosted decision tree produced similar ROC. 

• A predictive model that can detect important latent relationships between

predictor variables and that is not hindered by strong assumptions

regarding the functional form of the relationship between the available

predictors and outcomes of interest may inform clinical and regulatory

decision making.

• A robust and validated predictive model may serve as an additional clinical

decision-tool that may identify high-risk patients.

• Identified high-risk patients may benefit from additional post-operative

monitoring and can also inform communications between clinicians and

patients. Informing patients of their increased risk may allow them to

implement lifestyle changes.

• Predictive models may support regulatory decision making by promptly

identifying complex patient populations where devices or a combination of

devices may not be performing as intended.
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